物质就其原子排列方式来说,可以划分为晶体和非晶体两类。有些物质里面的原子排列是整齐有序的,就象阅兵式上的士兵,这叫做晶体,比如食盐、钻石、普通的钢铁就是这样。也有些物质的原子排列是混乱的,就象一堆钢球的混乱堆积,这叫做非晶体,比如液体、气体、玻璃、塑料等。对于金属材料来说,通常情况下,金属及合金在从液体凝固成固体(例如炼钢后的钢水凝固成钢锭)时,原子总是从液体的混乱排列转变成整齐的排列,即成为晶体。因为只有这样,其结构才*稳定。但是,如果金属或合金的凝固速度非常快(例如用每秒高达一百万度的冷却速率将铁-硼合金熔体凝固),原子来不及整齐排列便被冻结住了,*终的原子排列方式类似于液体,是混乱的,这就是非晶合金。因为非晶合金原子的混乱排列情况类似于玻璃,所以又称为金属玻璃。什么样的物质能够制造成非晶呢?从理论上说,任何物质主要它的液体冷却足够快,原子来不及整齐排列就凝固,那么原子在液态时的混乱排列被迅速冻结,就可以形成非晶。但是,不同的物质形成非晶所需要的冷却速度大不相同。例如,普通的玻璃只要慢慢冷却下来,得到的玻璃就是非晶态的。而单一的金属则需要每秒高达一亿度以上的冷却速度才能形成非晶态。由于目前工艺水平的限制,实际生产中难以达到如此高的冷却速度,也就是说,普通的单一的金属难以从生产上制成非晶。为了获得非晶态的金属,一般将金属与其它物质混合。当原子尺寸和性质不同的几种物质搭配混合后,就形成了合金。这些合金具有两个重要性质:A、合金的成分一般在冶金学上的所谓“共晶”点附近,它们的熔点远低于纯金属,例如FeSiB合金的熔点一般为1200度以下,而纯铁的熔点为1538度;B、由于原子的种类多了,合金在液体时它们的原子更加难以移动,在冷却时更加难以整齐排列,也就是说更加容易被“冻结”成非晶。有了上面的两个重要条件,合金才可能比较容易地形成非晶。例如,铁和硼的合金只需要每秒一百万度的冷却速度就可以形成非晶。实际上,目前所有的实用非晶合金都是两种或更多种元素组成的合金,例如Fe-Si-B,FeNiPB,CoZr,ZrTiCuNi等。迄今为止,国内外非晶合金开发*多的是作为软磁材料的一类。它们在化学成分上的一个共同点是:由两类元素组成:一类是铁磁性元素(铁、钴、镍或者他们的组合),它们用来产生磁性;另一类是硅、硼、碳等,它们称为类金属,也叫做玻璃化元素,有了它们,合金的熔点比纯金属降低了很多,才容易形成非晶。
关键字:非晶,超微晶,纳米晶,坡莫合金,带材,合金,铁芯,磁环,磁芯,互感器,铁基,钴基,电流互感器,电压互感器,零序互感器,微型精密互感器,磁性材料,软磁材料,电抗器,PFC,变压器铁芯,共模电感线圈、差模电感线圈,电感器,逆变器,尖峰抑制器,霍尔传感器铁芯,配电变压器铁芯,中频电源变压器铁芯,恒导电感铁芯,PFC功率因数校正和无气隙电感铁芯,脉冲变压器铁芯,磁放大器,高频开关电源铁芯,超市及书店防盗系统标签,电抗器,输出滤波及储能电感铁芯,逆变式电焊机变压器,配电变压器铁芯,逆变电源、不间断电源用功率变压器、控制变压器、磁放大器,电子式电能表、精密功率表,电量变送器。。
相关参数名称:剩余饱和磁场感应强度,居里温度,晶化温度,密度,电阻率,磁致伸缩系数,占空系数,初始、*大磁导率,矫顽力,连续工作温度,铁芯损耗,牌号,带材宽度,厚度,硬度,规格,典型磁性,*大铁损,*小磁感,气隙,中频,高频,工频,噪音,温升,效率,漏磁,退火,输入电流,输出电压
精度等级,初级,次级,一次、二次电流,引针、引线,负载、空载,额定电流,电流比,灵敏度,圈数匝数,电阻,输出电压,耐、抗直流,精密微型,偏流,比差,角差,相位差,电压隔离,绝缘电阻,抗电强度,测试条件,频率,绕线,电气特性,型号,电路