整流二极管工作原理图

分享到:
点击量: 216496 来源: 深圳市凯高达科技有限公司

整流二极管工作原理图

整流二极管工作原理图

A. 半导体的基本知识
  多数现代电子器件是由性能介于导体与绝缘体之间的半导体材料制成的。为了从电路的观点理解这些器件的性能,首先必须从物理的角度了解它们是如何工作的。

一、半导体材料

  从导电性能上看,物质材料可分为三大类:

  导体: 电阻率ρ < 10-4 ,电阻变小。这时的外加电压称为正向电压或正向偏置电压用VF表示。

  在VF作用下,通过PN结的 电流 称为正向 电流 IF。外加正向 电压 的电路如图所示。


2、外加反向电压

  当PN结外加反向电压时,外电场与内电场的方向相同,内电场变强,结果使空间电荷区(PN结)变宽, 同时空间电荷区中载流子的浓度减小,电阻变大。这时的外加电压称为反向电压或反向偏置电压用VR表示。在VR作用下,通过PN结的电流称为反向电流IR或称为反向饱和电流IS。如下图所示。



3、PN结的伏安特性

根据理论分析,PN结的伏安特性可以表达为:
  式中iD为通过PN结的电流,vD为PN结两端的外加电压;VT为温度的电压当量=kT/q=T/11600=0.026V, 其中k为波尔慈曼常数(1.38×10-23J/K),T为**温度(300K),q为电子电荷(1.6×10-19C) ;e为自然对数的底;IS为反向饱和电流。



整流二极管工作原理C.  半导体二极管的结构

  半导体二极管按其结构的不同可分为点接触型和面接触型两类。

  点接触型二极管是由一根很细的金属触丝(如三价元素铝)和一块半导体(如锗)的表面接触,然后在正方向通过很大的瞬时电流,使触丝和半导体牢固地熔接在一起,三价金属与锗结合构成PN结,并做出相应的电极引线,外加管壳密封而成,如图 2.7所示。由于点接触型二极管金属丝很细, 形成的PN结面积很小, 所以,也不能承受高的反向电压和大的电流。这种类型的管子适于做高频检波和脉冲数字电路里的开关元件, 也可用来作小电流整流。 如2APl是点接触型锗二极管, *大整流电流为16mA, *高工作频率为15OMHz。

  面接触型或称面结型二极管的PN结是用合金法或扩散法做成的,其结构如图2.7 所示。由于这种二极管的PN结面积大,可承受较大的电流,但极间电容也大。这类器件适用于整流,而不宜用于高频电路中。如2CPl为面接触型硅二极管,*大整流电流为40OmA, *高工作频率只有3kHz。

  图2.7中的硅工艺平面型二极管结构图, 是集成电路中常见的一种形式。代表二极管的符号也在图2.7中示出。

  部分二极管实物如图2.8所示。    


整流二极管工作原理d 、二极管的伏安特性:

  实际。由图可以看出,二极管的V-I特性和PN结的V-I特性(图2.6)基本上是相同的。下面对二极管V-I特性分三部分加以说明:

1、正向特性:二极管外加正向偏置电压时的V-I特性


  对应于图2.9(b)的第①段为正向特性,此时加于二极管的正向电压只有零点几伏,但相对来说流过管子的电流却很大,因此管子呈现的正向电阻很小。但是,在正向特性的起始部分,由于正向电压较小,外电场还不足以克服PN结的内电场,因而这时的正向电流几乎为零,二极管呈现出一个大电阻,好像有一个门坎。 硅管的门坎电压Vth(又称死区电压)约为0·5V,锗管的Vth约为0·lV,当正向电压大于Vth时,内电场大为削弱,电流因而迅速增长。


2、反向特性:二极管外加反向偏置电压时的V-I特性


  P型半导体中的少数载流子(电子)和N型半导体中的少数载流子(空穴),在反向电压作用下很容易通过PN结, 形成反向饱和电流。但由于少数载流子的数目很少, 所以, 一般硅管的反向电流比锗管小得多,其数量级为:硅管nA级,锗管大mA级。

  温度升高时,由于少数载流子增加,反向电流将随之急剧增加。


3、反向击穿特性:二极管击穿时的V-I特性


  当增加反向电压时, 因在一定温度条件下, 少数载流子数目有限,故起始一段反向电流没有多大变化,当反向电压增加到一定大小时,反向电流剧增,这叫做二极管的反向击穿, 对应于图2.9的第③段,其原因与PN结击穿相同。