设计应用
226600W双管正激变换器中高频变压器的设计方案
21IC电子网 (0)1、 引言在高频开关变换器中磁性元件的应用非常广泛,主要有变压器和电感器两大类:当变压器用时,可起电气隔离、升降压及磁耦合传递能量等作用;当电感器用时,起到储存能量、平波与滤波等功能。并且其性能的好坏对变换器的性能产生重要影响,特别对整个装置的效率、体积及重量起举足轻重的作用。因此,磁性元件的设计是高频开关变换器设计中的重要环节。高频开关变换器中的磁性元件设计,通常是根据铁芯的工作状态,合理选用铁芯材料,正确设计计算磁性元件的铁芯及绕组参数。但由于磁性元件所涉及的参数太多,其工作状态不易透彻掌握,因此常规的设计方法不能**反映其实际工作情况和考虑其它因素的影响,也就很难达到所需的性能指标和满足设计要求。针对高频开关变换器中的磁性元件设计的重要性、必要性及其复杂性,笔者采用IntuSOFt公司的“Magnetics Designer”软件根据磁性元件的实际工作情况进行计算设计,获得较理想的效果。本文首先介绍了磁性元件设计中应考虑、注意的一些问题,并针对600W双管正激变换器中的高频变压器给出了具体的设计方法和设计过程,*后通过仿真加以验证。2、 磁性元件设计中应考虑的要点2.1 铁芯瞬态
设计应用
227LTE语音三步走CSFB技术凸显便捷性
通信世界网 (0)由于目前VoIP业务的性能指标未能达到现有电路域语音业务的质量,而且需要全网布署IMS,因此在现有网络基础上,形成了三种不同的LTE语音解决方案:基于双待机终端方案、CSFB和VoLTE。CSFB和VoLTE均为3GPP定义的LTE语音解决方案,两个方案在3GPP规范中均有明确定义。VoLTE需要终端、无线和核心网的**支持和优化,从目前来看实现复杂度较大。CSFB是在产业界未实现VoLTE时提出的一种相对较为简单的语音解决方案。双待机:技术实现简单双待机终端可以同时待机在LTE网络和3G/2G网络里,而且可以同时从LTE和3G/2G网络接收和发送信号,其语音解决方案的实质是使用传统3G/2G网络,与LTE无关。基于双待机终端的语音解决方案是一个相对比较简单的方案。终端芯片可以用两个芯片(1个3G/2G芯片和1个LTE芯片)或一个多模芯片来实现,LTE与3G/2G模式之间没有任何互操作,终端不需要实现异系统测量,技术实现简单。CSFB:逐步趋于完善CSFB方案的主要思想是在用户需要进行语音业务的时候,从LTE网络回落到3G/2G的电路域重新接入,并按照电路域的业务流程发起或接听语音业务
指纹识别技术的基本原理及过程
21IC电子网 (0)尽管指纹识别技术已经进入了民用领域,但是其工作原理其实还是比较复杂的。与人工处理不同,生物识别技术公司不直接存储指纹的图像。多年来,各生物识别技术公司及其研究机构研究了许多指纹识别算法(美国有关法律认为,指纹图像属于个人隐私,因此不能直接存储指纹图像)。但各种识别算法*终都归结为在指纹图像上找到并比对指纹的特征。这就是指纹识别技术的基本原理,即采集指纹图像并进行比对指纹特征。指纹的特征从普遍意义上来讲,可以定义指纹的两类特征来进行指纹的验证:总体特征和局部特征。总体特征是指那些用人眼直接就可以观察到的特征。它包括:1、基本纹型常见的指纹图案有环型、弓型、螺旋型,其他的指纹图案都基于这三种基本图案,只是一个粗略的分类,仅仅依靠图案类型来分辨指纹是远远不够的,但通过分类可以更加便利于在大数据库中搜寻到指纹。2、模式区(Pattern Area)模式区是包含了纹型特征的区域,即从模式区就能够分辨出指纹是属于那一种类型的。3、核心点(Core Point)核心点位于指纹纹路的渐进中心,它用于读取指纹和比对指纹时的参考点。4、三角点(Delta)三角点位于从核心点开始的**个分叉点或者断点、或者
实用EMC设计技巧
21IC电子网 (0)目前电子器材用于各类电子设备和系统仍然以印制电路板为主要装配方式。实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声。因此,在设计印制电路板的时候,注意采用正确的方法。A、地线设计在电子设备中,接地是控制干扰的重要方法。如能将接地和屏蔽正确结合起来使用,可解决大部分干扰问题。电子设备中地线结构大致有系统地、机壳地(屏蔽地)、数字地(逻辑地)和模拟地等。在地线设计中应注意以下几点:1.正确选择单点接地与多点接地在低频电路中,信号的工作频率小于1MHz,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。当信号工作频率大于10MHz时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。当工作频率在1~10MHz时,如果采用一点接地,其地线长度不应超过波长的1/20,否则应采用多点接地法。2.将数字电路与模拟电路分开电路板上既有高速逻辑电路,又有线性电路,应使它们尽量分开,而两者的地线不要相混,分别与电源端地线相连。要
设计应用
228入门分享:3D三维晶体管的基础知识
21IC电子网 (0)一、3D三维晶体管的概念3D三维晶体管,从技术上讲,应该是三个门晶体管。传统的二维门由较薄的三维硅鳍(fin)所取代,硅鳍由硅基垂直伸出。门包围着硅鳍。硅鳍的三个面都由门包围控制,上面的顶部包围一个门,侧面各包围一个门,共包围三个门。在传统的二维晶体管中只有顶部一个门包围控制。英特尔对此作了十分简单的解释:“由于控制门的数量增加,晶体管处于‘开’状态时,通过的电流会尽可能多;处于‘关’状态时,电流会尽快转为零,由此导致能耗降至*低。而且晶体管在开与关两种状态之间迅速切换能够显着的提高电路性能。实际上,3D晶体管就是tri-gate 和32nm的区别。3-D Tri-Gate三维晶体管相比于32nm平面晶体管可带来*多37%的性能提升,而且同等性能下的功耗减少一半,这意味着它们更加适合用于小型掌上设备。3-D Tri-Gate晶体管能够支持技术发展速度,它能让摩尔定律延续数年。该技术能促进处理器性能大幅提升,并且可以更节能,新技术将用在未来22纳米设备中,包括小的手机到大的云计算服务器都可以使用。二、3D三维晶体管的特点3-D Tri-Gate使用一个薄得不可思议的三维硅鳍片取代了传统二
电路设计中二极管选用准则
21IC电子网 (0)二极管又称晶体二极管,简称二极管(diode),另外,还有早期的真空电子二极管;它是一种具有单向传导电流的电子器件。在半导体二极管内部有一个PN结两个引线端子,这种电子器件按照外加电压的方向,具备单向电流的转导性。一般来讲,晶体二极管是一个由p型半导体和n型半导体烧结形成的p-n结界面。在其界面的两侧形成空间电荷层,构成自建电场。当外加电压等于零时,由于p-n 结两边载流子的浓度差引起扩散电流和由自建电场引起的漂移电流相等而处于电平衡状态,这也是常态下的二极管特性。1.根据电路功能的选用高频检波电路应选用锗检波二极管,它的特点是工件频率高,正向压降小和结电容小,2AP11~17用于40M以下,2AP9~10用于100M以下,2AP1~8用于150M以下,2AP30用于400M以下。2.根据整机体积整机向小型化,薄型化和轻型化方向发展,要求配套二极管微型化和片状化。DO-35型开关二极管和频段开关二极管的玻壳长度为3.8mm,DO-34频段开关二极管的玻壳长度为2.2mm,SOD-23型塑封变容二极管长度为4mm。3.根据整机性价比对二极管进行合理选用根据整机性价比和配套二极管在整机中的
设计应用
229浅谈智能电网的**设计
21IC电子网 (0)对智能电网来说,因为电网基础设施受到攻击的几率越来越高,各个国家稳定的电力供应都处在受到恶意攻击危险之中,从而使得**问题的重要性日益增加。对此,IT**性尤为重要;很多方案支持端到端的通信数据加密,如:数据集中器、监控器和数据采集器系统(SCADA)。对IT加密措施的关注是毋庸置疑的,因为需要确保“空中”传输数据的**性。但是,即使采用强大的端到端加密也无法保护整个智能电网的**:因为嵌入式设备本身易受攻击。加密等于**?虽然加密工具对于隐私保护和传输数据、命令的认证非常有效,但必须注意到这仅是解决方案的一部分。加密的作用在于防止被保护数据在传输或存储过程中被解密或伪造。有些人认为复杂的RF或电力载波通信依赖调频即可完全保证数据的**性,其实此类保护很容易被攻破。假设攻击者可以任意控制远程电表拉合闸继电器,那么电力公司将需要投入大量资源忙于处理故障。电力公司不但因此遭受经济损失,而且会带来很**烦,对于那些必须使用空调的场所造成生存威胁。那么,如何避免此类事故的发生呢?如果通信双方都通过密钥对通信线路上的数据进行加密、解密、签名或验证,从嵌入式传感器到控制系统的数据加密非常关键,用于
浅谈PCB设计中的阻抗匹配与0欧电阻
21IC电子网 (0)1、阻抗匹配阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。根据接入方式阻抗匹配有串行和并行两种方式;根据信号源频率阻抗匹配可分为低频和高频两种。(1)高频信号一般使用串行阻抗匹配。串行电阻的阻值为20~75Ω,阻值大小与信号频率成正比,与PCB走线宽度成反比。在嵌入式系统中,一般频率大于20M的信号且PCB走线长度大于5cm时都要加串行匹配电阻,例如系统中的时钟信号、数据和地址总线信号等。串行匹配电阻的作用有两个:◆减少高频噪声以及边沿过冲。如果一个信号的边沿非常陡峭,则含有大量的高频成分,将会辐射干扰,另外,也容易产生过冲。串联电阻与信号线的分布电容以及负载输入电容等形成一个RC电路,这样就会降低信号边沿的陡峭程度。◆减少高频反射以及自激振荡。当信号的频率很高时,则信号的波长就很短,当波长短得跟传输线长度可以比拟时,反射信号叠加在原信号上将会改变原信号的形状。如果传输线的特征阻抗跟负载阻抗不相等(即不匹配)时,在负载端就会产生反射,造成自激振荡。PCB板内走线的低频信号直接连通即可,一般不需要加串行匹配电阻。(2)并行阻抗匹配又叫“终端阻抗匹配”,一般用在输入/输出接口
超导磁储能的发展历史及现状
21IC电子网 (0)摘要:我国经济高速发展使得我国的电力系统已经成为世界上*庞大*复杂的系统之一。电力**已经成为国家**的一个重要方面。同时,信息化、精密制造以及生产生活对电力的依赖程度已经对电力供给的可靠性和供电品质提出了更高的要求。石油、煤炭等能源资源将无法满足未来电力的供给需要,开发新能源、可再生能源已成为一项保证国家可持续发展的战略性国策。21世纪电力工业所面临的主要问题有:应用分散电力系统,提高设备利用率,远距离大容量输电,各大电网间联网,高质量供电,改善负荷特性等。针对这些问题,与现有的采用常规导体技术的解决方案相对应,都有一种甚至多钟超导电力装置能为问题的解决提供新的技术手段。由于超导体的电阻为零,因此其载流密度很高,因此可以使超导电力装置普遍具有体积小、重量轻等特点,制成常规技术难以达到的大容量电力装置,还可以制成运行于强磁场的装置,实现高密度高效率储能。作为一种具备快速功率响应能力的电能存储技术,超导磁储能系统 (SuperconductingMagneticEnergyStorage,SMES)可以在提高电力**、改善供电品质、增强新能源发电的可控性中发挥重要作用。超导储能系统的构成
几种保护LED电路的小窍门
21IC电子网 (0)一、LED电路的基本概念LED(Light-Emitting-Diode中文意思为发光二极管)是一种能够将电能转化为可见光的半导体,它改变了白炽灯钨丝发光与节能灯三基色粉发光的原理,而采用电场发光。据分析,LED的特点非常明显,寿命长、光效高、无辐射与低功耗。LED的光谱几乎全部集中于可见光频段,其发光效率可达80~90%.将LED与普通白炽灯、螺旋节能灯及T5三基色荧光灯进行对比,结果显示:普通白炽灯的光效为12lm/W,寿命小于2000小时,螺旋节能灯的光效为60lm/W,寿命小于8000小时,T5荧光灯则为96lm/W,寿命大约为10000小时,而直径为5毫米的白光LED为20~28lm/W,寿命可大于100000小时。有人还预测,未来的LED寿命上限将无穷大。大功率,指发光工率大,一般指0.5W,1W 3W 5W或更高的。光强与流明是比小功率大,但同样散热也很大,现在大功率都是单颗应用,加很大的散热片。小功率一般是0.06W左右的。插件和食人鱼等。现在LED手电一般是用小功率用的,光散不散,取决于LED的发光角度,有大角度小角度之分,小角度不散,大角度才散。而有些LED在使用中
基于P89V51RB2单片机的实验箱设计与开发
21IC电子网 (0)0 引言单片机,是嵌入式处理器的一大类(另外还有DSP、FPGA等),具有高度集成、体积小、功耗低、降低成本等诸多优点。随着单片机技术的不断发展,单片机在微机控制领域占据着重要地位,由于其具有体积小、可靠性好、易扩展、控制功能强、使用方便等优点,在智能仪表、工业测控、计算机网络与通信设备、日常生活及家用电器等方面都得到了广泛的应用[1~2].单片机已广泛应用于工业控制、智能家用电器、通讯、医疗和**等众多领域,社会对掌握单片机技术的应用型人才的需求越来越大[3].本设计的实验箱采用了数字逻辑,单片机原理,电路基础,动态数码管扫描等各个方面的理论依据。单片机原理是一种在线式实时控制计算机,在线式就是现场控制,需要的是有较强的抗干扰能力,较低的成本,单片机依靠程序运行,并且可以修改。单片机通过编写的程序可以实现高智能,高效率,以及高可靠性。1 设计概述及目的本设计是制作一个实验箱,并对其进行实验和软件程序设计。实验箱中包括MCU、基础外设和扩展外设。从国内同行业情况来看,单片机实验箱没有高精度集成,但是本次设计的实验箱基本做到了高集成、高效率,以及可靠性等。系统的设计过程,首先要了解实验箱
设计应用
230一种因光纤漂移引起SERDESFIFO溢出的解决方案
TI (0)摘要分布式基站系统中,RRU 通常会通过光纤拉远实现与 BBU 的远程互联。由于光纤自身的特性,传输过程中必然会引入抖动和漂移;尤其是漂移,因其低频特性,并且难于滤除,在SERDES 的 FIFO 深度不够的情况下有可能会造成 FIFO 的溢出。本文首先会对这个问题进行一般性地分析,在此基础上我们将以德州仪器公司 10G SERDES 器件 TLK10002 为例,提出一个新的解决方案,即采用双时钟模式提供 SERDES系统时钟,并且探讨了这种模式的具体实现方式。同时,为了验证双时钟方案的可行性,我们搭建了相应的测试平台,并给出了相应的测试结果。1、 光纤漂移引起的 SERDES FIFO 溢出问题分析1.1 漂移及漂移形成的原因漂移是一个数字信号的有效瞬时在时间上偏离其理想位置的,非累计性的偏离。所谓的“长期的偏离”是指偏离随时间较慢的变化,通常认为变化频率低于 10Hz 就属于较慢的变化。实际数字信号存在的相位噪声,抖动时相位噪声的高频成分,漂移是相位噪声的低频成分,工程中以10Hz 来划分高、低频。产生这两种频率成分的机理有所不同。产生低频成分,也就是产生漂移的主要原因是传输媒质
FPGA学习的一些误区汇总整理
21IC电子网 (0)1、不熟悉FPGA的内部结构,不了解可编程逻辑器件的基本原理。FPGA为什么是可以编程的?恐怕很多菜鸟不知道,他们也不想知道。因为他们觉得这是无关紧要的。他们潜意识的认为可编程嘛,肯定就是像写软件一样啦。软件编程的思想根深蒂固,看到Verilog或者VHDL就像看到C语言或者其它软件编程语言一样。一条条的读,一条条的分析。如果这些菜鸟们始终拒绝去了解为什么FPGA是可以编程的,不去了解FPGA的内部结构,要想学会FPGA恐怕是天方夜谭。虽然现在EDA软件已经非常先进,像写软件那样照猫画虎也能综合出点东西,但也许只有天知道EDA软件*后综合出来的到底是什么。也许点个灯,跑个马还行。这样就是为什么很多菜鸟学了N久以后依然是一个菜鸟的原因。那么FPGA为什么是可以“编程”的呢?首先来了解一下什么叫“程”。其实“程”只不过是一堆具有一定含义的01编码而已。编程,其实就是编写这些01编码。只不过我们现在有了很多开发工具,通常都不是直接编写这些01编码,而是以**语言的形式来编写,*后由开发工具转换为这种01编码而已。对于软件编程而言,处理器会有一个专门的译码电路逐条把这些01编码翻译为各种控制信
如何调试新设计的PCB电路板
21IC电子网 (0)对于刚拿回来的新PCB板,我们首先要大概观察一下,板上是否存在问题,例如是否有明显的裂痕,有无短路、开路等现象。如果有必要的话,可以检查一下电源跟地线之间的电阻是否足够大。然后就是安装元件了。相互独立的模块,如果您没有把握保证它们工作正常时,*好不要全部都装上,而是一部分一部分的装上(对于比较小的电路,可以一次全部装上),这样容易确定故障范围,免得到时遇到问题时,无从下手。一般来说,可以把电源部分先装好,然后就上电检测电源输出电压是否正常。如果在上电时您没有太大的把握(即使有很大的把握,也建议您加上一个保险丝,以防万一),可考虑使用带限流功能的可调稳压电源。先预设好过流保护电流,然后将稳压电电源的电压值慢慢往上调,并监测输入电流、输入电压以及输出电压。如果往上调的过程中,没有出现过流保护等问题,且输出电压也达到了正常,则说明电源部分OK.反之,则要断开电源,寻找故障点,并重复上述步骤,直到电源正常为止。接下来逐渐安装其它模块,每安装好一个模块,就上电测试一下,上电时也是按照上面的步骤,以避免因为设计错误或/和安装错误而导致过流而烧坏元件。寻找故障的办法一般有下面几种:①测量电压法。首先
PCB工程师需要注意层叠设计
21IC电子网 (0)较多的PCB工程师,他们经常画电脑主板,对Allegro等**的工具非常的熟练,但是,非常可惜的是,他们居然很少知道如何进行阻抗控制,如何使用工具进行信号完整性分析。如何使用IBIS模型我觉得真正的PCB高手应该还是信号完整性专家,而不仅仅停留在连连线,过过孔的基础上对布通一块板子容易,布好一块好难。小资料对于电源、地的层数以及信号层数确定后,它们之间的相对排布位置是每一个PCB工程师都不能回避的话题;单板层的排布一般原则:元件面下面(**层)为地平面,提供器件屏蔽层以及为顶层布线提供参考平面;所有信号层尽可能与地平面相邻;尽量避免两信号层直接相邻;主电源尽可能与其对应地相邻;兼顾层压结构对称。对于母板的层排布,现有母板很难控制平行长距离布线,对于板级工作频率在50MHZ以上的(50MHZ以下的情况可参照,适当放宽),建议排布原则:元件面、焊接面为完整的地平面(屏蔽);无相邻平行布线层;所有信号层尽可能与地平面相邻;关键信号与地层相邻,不跨分割区。注:具体PCB的层的设置时,要对以上原则进行灵活掌握,在领会以上原则的基础上,根据实际单板的需求,如:是否需要一关键布线层、电源、地平面的分
设计应用
231华为XPON智能配电解决方案
21IC电子网 (0)智能电网(Smart Power Grids)已成为世界电网体系技术革新的*新动向,是改变未来电力系统面貌的发展新模式。我国也高度关注智能电网发展,国网“十二五”期间将投资 2860亿元建设智能电网,重点提升骨干传输网承载能力和可靠性,加强和加快10千伏通信接入网建设。至2015年底,要求城市10千伏配电站点通信总覆盖率达到52%,其中光纤通信覆盖率达30%;农网10千伏配电站点通信总覆盖率达到12%,其中光纤通信覆盖率6%。由此可见,智能配网通信系统将成为整个智能电网建设的关键环节。智能配电网建设迫在眉睫国家电网公司总经理刘振亚在与美国能源部长朱棣文的会谈中说道: “统一坚强智能电网建设是以特高压电网为骨干网架,各级电网协调发展,具有信息化、自动化、互动化特征的统一坚强智能电网”。中国处于经济快速发展时期,对电力的需求与日俱增,供电压力十分巨大;从长远来看,智能电网是满足用户多样化需求,提升电网增值服务与互动能力的友好途径。如随着智能楼宇、电动汽车、智能监控、智慧城市等快速发展,用户对电网的供电可靠性,电能质量、用电服务等更为关注。由于配电网络直接面向客户,具有布网复杂、故障率高等特
LTE发机ACLR性能的测量技术
21IC电子网 (0)现代无线服务提供商正致力于不断扩大带宽,为更多用户提供互联网协议(IP)服务。长期演进技术(LTE)是对当前部署的 3GPP 网络进行增强并创造更多更重要应用的新一代蜂窝技术。LTE 的体系结构复杂同时还在不断演进当中,这为网络和用户设备的设计与测试带来了新的挑战。其中,在空中接口上的一个关键挑战就是如何在信号传输过程中进行功率管理。在 LTE 等数字通信系统中,发射信号泄漏到邻近信道的功率可能会对邻近信道中的信号传输产生干扰,进而影响系统性能。相邻信道泄漏功率比(ACLR)测试可以验证系统发射机的工作性能是否符合规定的限制。鉴于 LTE 技术的复杂性,快速和**地执行这种关键测试对于测试人员来说充满挑战性。装有 LTE 特定信号生成软件的信号发生器、装有 LTE 特定测量软件的现代化信号分析仪,以及针对该分析仪优化的方法,可以帮助测试人员战胜这一挑战。了解 ACLR 测试要求ACLR 是 LTE 射频发射机一致性测试中的一个重要的发射机特性。这些测试的目的是验证被测件是否达到了基站(eNB)和用户设备(UE)中的*低要求。大部分针对带外发射的 LTE 一致性测试在定义和目的上与针对
核电投产对区域电网电量平衡的影响
21IC电子网 (0)按照规划,从2013年起福建每年将有超过200万千瓦的核电机组陆续投入运行,到2015年福建将有6台共654万千瓦核电机组陆续并网发电、并形成年500亿千瓦时的电力供给能力。福建电网电源结构将由煤电、水电为主向煤电、核电、水电并重转变;加上“十二五”期间国家电网通过特高压线路输送的250万~300万千瓦西部水电,福建燃煤电厂面临强大的“供给冲击”,面临生存与发展的压力,需要统筹解决三方面的问题:——市场问题。在市场没有能力完全消纳核电新增电量的情况下,燃煤机组的发电小时数将受到挤压;若遇到丰水年,燃煤机组将面临生存压力。需要提升电网输配能力、扩大省内外市场,消纳电力产能。——调峰问题。在核电带基荷条件下,以燃气机组启停调峰、燃煤机组深度调峰为主力的调峰电源将无法满足电网调峰需求;加上风电、太阳能发电的快速发展,电网调峰面临挑战。需要建设以抽水蓄能电站为主力的调峰电源,提升电网调峰能力。——调度问题。在煤电作为电网主力电源短期内无法改变条件下,煤电不能因为核电而溃不成军,需要一个相对稳定的、可预期的生存与发展空间。截至2012年底,福建电力总装机3877万千瓦,其中水电1138万千瓦、火