设计应用
211基于Arm的电子束焊机灯丝电源的设计方案
21IC电子网 (0)传统的电子束焊机电源系统采用工频或中频技术,具有体积大、效率低、束流稳定性差等缺点。分析电子束焊机电源目前存在的缺点并结合现代电力电子技术,本文提出一种基于Arm的全数字化控制的灯丝电源方案,并详细介绍了软硬件实现方法。实验表明,该灯丝电源能够**地稳定阴极灯丝电流,灯丝发射电子密度稳定性好,达到很好的性能要求。1.引言电子束焊机的工作原理如图1所示,当高压电子枪中的阴极灯丝被加热到一定的温度时会逸出电子,散射出的电子则在高压电场中被加速至光速或接近光速,电子通过电磁透镜聚焦后,形成能量密度超高的电子束,当电子束轰击焊件表面时,电子的强大动能瞬间转变为热能,使金属熔融,待冷却后自然凝固,达到焊接的目的。电子束焊接阴极灯丝电源主要用于对阴极灯丝的加热,使其受热后发射电子,控制灯丝加热电源的输出电压或电流可达到控制溢出电子的目的,从而间接的控制电子束流大小。在实际焊接过程中,需要阴极灯丝能够稳定的发射电子并维持电子枪内电子密度几乎不变,故对灯丝加热电源的要求很高。2.系统构成及主回路设计图2是数字控制的电子束焊机阴极灯丝加热电源的电路原理框图。灯丝电源主要由滤波整流电路、Buck调压电路、
电源驱动LED的基本原理与具体方法
21IC电子网 (0)原始电源有各种形式,但无论哪种电源,一般都不能直接给LED供电。因此,要用LED做照明光源首先就要解决电源变换问题。LED实际上是一个电流驱动的低电压单向导电器件,LED驱动器应具有直流控制、高效率、PWM调光、过压保护、负载断开、小型尺寸,以及简便易用等特性。设计给LED供电的电源变换器时必须要注意以下事项。①由于LED是单向导电器件,所以要用直流电流或者单向脉冲电流给LED供电。②由于LED是一个具有PN结结构的半导体器件,具有势垒电动势,这就形成了导通门限电压,所以加在LED上的电压值必须超过这个门限电压,LED才会充分导通。大功率LED的门限电压一般在2.5V以上,正常工作时LED的压降为3~4V。③LED的电流、电压特性是非线性的。因为流过LED的电流在数值上等于供电电源的电动势减去LED的势垒电动势后再除以回路的总电阻(电源内阻、引线电阻、LED体电阻之和),所以流过LED的电流和加在LED两端的电压不成正比。④由于LED的PN结具有负的温度系数,则温度升高时LED的势垒电动势会降低。因此LED不能直接用电压源供电,且必须采取限流措施,否则随着LED工作时温度的升高,电流会
设计应用
212开关电源原理与设计(连载七)反转式串联开关电源
21IC电子网 (0)1-3-3.反转式串联开关电源储能滤波电容的计算反转式串联开关电源储能滤波电容参数的计算,与串联式开关电源储能滤波电容的计算方法基本相同。但要注意,即使是在占空比D等于0.5的情况下,滤波电容器充、放电的时间都不相等,滤波电容器充电的时间小于半个工作周期,而电容器放电的时间则大于半个工作周期,但电容器充、放电的电荷是相等的,即电容器充电时的电流大于放电时的电流。这是整流滤波电路的普遍规律。从图1-8可以看出,在占空比D等于0.5的情况下,电容器充电的时间为3T/8 ,电容充电电流的平均值为3iLm/8或3Io/2 ;而电容器放电的时间为5T/8,电容放电电流的平均值为0.9 Io。因此有:式中ΔQ为电容器充电的电荷,Io流过负载的平均电流,T为工作周期。电容充电时,电容两端的电压由*小值充到*大值(***),相应的电压增量为2ΔUc,由此求得电容器两端的波纹电压ΔUP-P为:(1-33)和(1-34)式,就是计算反转式串联开关电源储能滤波电容的公式(D = 0.5时)。式中:Io是流过负载电流的平均值,T为开关工作周期,ΔUP-P为滤波输出电压的波纹,或电压纹波。一般波纹电压都是取电压
开关电源原理与设计(连载六)反转式串联开关电源
21IC电子网 (0)1-3-2.反转式串联开关电源储能电感的计算反转式串联开关电源储能电感的计算方法与前面“串联式开关电源储能滤波电感的计算”方法基本相同,计算反转式串联开关电源中储能电感的数值,也是从流过储能电感的电流为临界连续电流状态进行分析。但须要特别注意,反转式串联开关电源中的储能电感仅在控制开关K关断期间才产生反电动势向负载提供能量,因此,流过负载的电流比串联式开关电源流过负载的电流小一倍,即:当占空比小于0.5时,反转式串联开关电源中流过负载R的电流Io只有流过储能电感L*大电流iLm的四分之一。根据(1-21)式:iLm =Ui*Ton/L —— K关断前瞬间 (1-21)(1-21)式可以改写为:4Io = Ui*T/2L —— K关断前瞬间 (1-28)式中Io为流过负载的电流,当D = 0.5时,其大小等于*大电流iLm的四分之一;T为开关电源的工作周期,T正好等于2倍Ton。由此求得:L = Ui*T/8Io —— D = 0.5时 (1-29)或:L > Ui*T/8Io —— D = 0.5时 (1-30)(1-29)和(1-30)式,就是计算反转式串联开关电源中储能电感的公式。
设计应用
213四轴飞行器无刷直流电机驱动技术研究
21IC电子网 (0)ATMEGA16单片机作为控制核心,利用反电势过零点检测轮流导通驱动电路的6个MOSFET实现换向;直流无刷电机控制程序完成MOSFET上电自检、电机启动软件控制,PWM电机转速控制以及电路保护功能。实践证明,该设计电路结构简单,成本低、电机运行稳定可靠,实现了电机连续运转。0 引言近年来,四轴飞行器的研究和应用范围逐步扩大,它采用四个无刷直流电机作为其动力来源。无刷直流电机为外转子结构,直接驱动螺旋桨高速旋转。无刷主流电机的驱动控制方式主要分为有位置传感器和无位置传感器的控制方式两种。由于在四轴飞行器中的要求无刷直流电机控制器要求体积小、重量轻、高效可靠,因而采用无位置传感器的无刷直流电机。本文采用的是朗宇X2212 kv980无刷直流电机。无刷直流电机驱动控制系统包括驱动电路和系统程序控制两部分。采用功率管的开关特性构成三相全桥驱动电路,之后使用DSP作为主控芯片,借助其强大的运算处理能力,实现电机的启动与控制,但电路结构复杂成本高,缺乏经济性。直流无刷电机的换向采用反电势过零检测法,一旦检测到第三相的反电势过零点就为换向做准备。反电势过零检测采用虚拟中性点的方法,通过检测电机各相
交流异步电动机的矢量控制系统设计方案
21IC电子网 (0)0 引言异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统,矢量控制是电机控制系统的一种先进控制方法,由于其交流调速时的优越性被广泛应用到异步电机调速系统中。基于Simulink 的交流异步电机仿真可以验证系统设计方案的有效性,在实验室应用过程中可能遇到系统设计难题。本文以双闭环矢量控制系统为研究对象,在Simu-link 中进行仿真来验证控制系统的有效性。通过分析仿真结果得到矢量控制系统的动静态特性,从而证实了本设计方案的可行性。1 矢量控制原理矢量控制系统,简称VC 系统,坐标变换是核心思想。矢量控制的基本思想是以产生同样的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流等效成两相静止坐标系上的交流电流,在通过坐标旋转变换将其等效成同步旋转坐标系上的直流电流,等效过程中实现磁通和转矩的解耦控制,达到直流电机的控制效果,得到直流电动机的控制量。便可将三相异步电动机等效为直流电动机来控制,获得与直流调速系统接近的动、静态性能。矢量控制中矢量变换包括三相-两相变换和同步旋转变换,将d 轴沿着转子总磁链矢量φr 的方向称为M 轴,将q 轴逆时针转90°,即垂直于矢
设计应用
214基于三相BLDC电机控制系统的设计探讨
21IC电子网 (0)0 引言如今,工程师将电机控制系统用于数字与模拟技术来应对过去面临的挑战,包括电机速度控制、旋转方向、漂移及电机疲劳等。微控制器 (MCU) 的应用为当代工程师提供了动态控制电机动作的机会,从而使其能够应对环境压力和状况。这有助于延长操作寿命并减少维修,从而降低成本。目前,电机制造商倾向于制造三相BLDC电机。原因在于BLDC电机不直接接触换向器和电气终端(有刷电机直接接触),因而不仅可降低功耗增加扭矩,同时还可延长操作时间。遗憾的是,与有刷直流或交流电机相比,三相电机控制装置更加复杂。此外,数字与模拟组件之间的关系变得非常重要。本文将简要探讨在三相BLDC电机应用中使用模拟组件和微控制器时应考虑的问题。同时还将重点介绍适合在直流电压从12V到300V不等的电源下驱动微控制器的电源管理装置及功率电平位移器。1 对BLDC电机的需求的来源近来,设计师更喜欢使用高效的BLDC���机。这种趋势适用于众多市场和各种应用。目前,许多应用能够或已经使用BLDC电机替代过时的交流电机或机械泵技术。使用BLDC电机的重要优势包括:●更高效(达 75%,交流电机仅为 40%)●更少的热量●高耐久性(无刷型
在网格数据组织中使用概念
电子设计工程 (0)摘要:商业企业每天产生大量的网格数据,作为网页信息交换的实际标准,*重要的挑战之一是如何有效地进行数据搜索,数据搜索可以以链接的方式进行。一些研究人员已经研究出了演算法,以减少搜索过程中产生的无效信息。另一些研究人员引入了记录法,可以进行相关元素的定位,无需搜索原始网格文档,通过记录的方式完成搜索过程。文中介绍的方法是基于正在被搜索的数据的概念,以及对网格数据库的内容搜索及关键字搜索,使用概念搜索可以提高搜索效率。关键词:网格;搜索;*佳化;演算;网页描述语言WSDL半结构化数据在网页中的**应用越来越普遍,商业企业每天生产及消费大量的数据。网格作为网页上半结构化的数据具有相当复杂的内部结构,有时还被提取出来作为命令树。在大多数的网格搜索语言中,网格查询的结构以链接的形式出现,网格元素的价值被用作选择谓词的一部分。有效链接模式匹配是网格数据库中网格搜索程序的关键。笔者概述了一种**方式,将数据的概念考虑进来进行网格搜索,介绍了在网格数据库中进行关键词搜索的一种有效的演算法。该方法的实质是,如果数据的概念是已知的,那么数据的概念可以用于搜索*佳化。首先定义一个数据模型,称之为CRD—FS
设计应用
215基于单片机的纺纱断线检测控制装置
21IC电子网 (0)0 引言纺纱机器在绕线过程中,判断细线是否断线是十分重要,因此纺纱断线检测装置是根据实际需要应运而生的产品,它能对纺纱过程进行断线检测和监控。本文就根据实际需要设计了一多功能纺纱断线检测控制装置,能够自动检测纱断情况,并且在断纱时,停止电机转动,并进行报警,提醒工作人员,方便工作人员进行故障处理。该装置能给纺纱工带来无限的方便,免去了纺纱工一直观察纱线状态的麻烦,大大地为纺纱工减少了劳动强度,同时也提高了产品的质量,并且也给商家带来更大的价值。同时该装置不仅可以应用于纺纱机器,还可以用于生产类似纱线之类的某些生产厂家。1 系统功能基于纺纱断线检测装置的功能要求,纺纱断线检测控制装置的电路主要由以AT89C2051为核心的单片机*小系统、断线检测模块、LED工作指示灯模块、纺纱机器控制模块、电源系统等电路组成。其具体工作情况如下:(1)上电后,工作LED 指示灯亮,当按下按钮后,LED指示灯灭,同时纺纱机器开始工作。(2)纺纱机器工作5 s后,如果纱线出现异常情况,LED 工作指示灯开始闪烁,同时控制纺纱机器停止工作。(3)当纱线工作异常后,此时工作人员进行纱线检修,当检修完毕时,工作人
选择*佳DC/DC变换器的要点及途径
21IC电子网 (0)一、元器件的选择1.DC-DC电源变换器的三个元器件1)开关: 无论哪一种DC/DC变换器主回路使用的元件只是电子开关、电感、电容。电子开关只有快速地开通、快速地关断这两种状态。只有快速状态转换引起的损耗才小,目前使用的电子开关多是双极型晶体管、功率场效应管,逐步普及的有IGBT管,还有各种特性较好的新式的大功率开关元件。2)电感: 电感是开关电源中常用的元件,由于它的电流,电压相位不同,因此理论损耗为零。电感常为储能元件,也常与电容公用在输入滤波器和输出滤波器上,用于平滑电流,也称它为扼流圈。其特点是流过它上的电流有“很大的惯性”.换句话说,由于“磁通连续性”,电感上的电流必须是连续的,否则将会产生很大的电压尖峰波。 电感为磁性元件,自然有磁饱和的问题,多数情况下,电感工作在线性区,此时电感值为一常数,不随端电压与流过的电流而变化。但是,在开关电源中有一个不可忽视的问题,就是电感的绕线所引起的两个分布参数(或称寄生参数)的现象。其一是绕线电阻,这是不可避免的;其二是分布式杂散电容,随绕线工艺、材料而定。杂散电容在低频时影响不大,随频率提高而渐显出来,到一频率以上时,电感也许变成电容的
设计应用
216开关电源原理与设计(连载五)反转式串联开关电源
21IC电子网 (0)1-3.反转式串联开关电源1-3-1.反转式串联开关电源的工作原理图1-7是另一种串联式开关电源,一般称为反转式串联开关电源。这种反转式串联开关电源与一般串联式开关电源的区别是,这种反转式串联开关电源输出的电压是负电压,正好与一般串联式开关电源输出的正电压极性相反;并且由于储能电感L只在开关K关断时才向负载输出电流,因此,在相同条件下,反转式串联开关电源输出的电流比串联式开关电源输出的电流小一倍。在一般电路中大部分都是使用单极性电源,但在一些特殊场合,有时需要两组电源,其中一组为负电源。因此,选用图1-7所示的反转式串联开关电源作为负电源是很方便的。图1-7中,Ui为输入电源,K为控制开关,L为储能电感,D为整流二极管,C为储能滤波电容,R为负载电阻。当控制开关K接通的时候,输入电源Ui开始对储能电感L加电,流过储能电感L的电流开始增加,同时电流在储能电感中也要产生磁场;当控制开关K由接通转为关断的时候,储能电感会产生反电动势,使电流继续流动,并通过整流二极管D进行整流,再经电容储能滤波,然后向负载R提供电流输出。控制开��K不断地反复接通和关断过程,在负载R上就可以得到一个负极性的电压
基于多传感器的多模型机动目标跟踪算法设计
21IC电子网 (0)本文选用当今*为流行、应用*广泛的雷达和红外作为传感器,在红外/雷达双模导引头的多传感器平台下展开研究,设计并仿真实现了更接近真实的**与民用环境的多模型机动目标跟踪算法。仿真结果验证了该算法跟踪性能的有效性。0 引言随着信息技术的快速发展和现代**及民用需求的不断提高,对目标跟踪的精度也相应地提出了更高的要求。在真实的目标跟踪系统中,目标的状态总是处在不断变化中,当目标真实运动模型与算法模型不匹配时,跟踪精度会明显下降,此时采用多模型(MulTIpleModel,MM)机动目标跟踪算法将会成为*佳选择。然而,当今的多模型目标跟踪方法大都停留在理论层面,对于多模型的实际应用价值及各模型的应用场合都需要做进一步的研究。本文选用当今*为流行、应用*广泛的雷达和红外作为传感器,在红外/雷达双模导引头平台下开展对交互式多模型机动目标跟踪算法的研究,并加入噪声干扰,更接近真实的**与民用环境。首先搭建红外/雷达双模导引头仿真平台,进而设计基于多传感器的多模型机动目标跟踪算法,采用扩展卡尔曼滤波,*终实现算法的软件仿真及跟踪性能评估,验证了所设计方法的有效性和实用性。1 多传感器平台搭建雷达和红外
电容式触摸屏原理及故障处理
21IC电子网 (0)电容式触摸屏结构图一、 电容式触摸屏概念电容式触摸屏技术是利用人体的电流感应进行工作的。电容式触摸屏是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂有一层ITO,*外层是一薄层矽土玻璃保护层,夹层ITO涂层作为工作面,四个角上引出四个电极 ,内层ITO为屏蔽层以保证良好的工作环境。 当手指触摸在金属层上时,由于人体电场,用户和触摸屏表面形成以一个耦合电容,对于高频电流 来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分从触摸屏的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的**计算,得出触摸点的位置。二、电容式触摸屏工作原理电容屏要实现多点触控,靠的就是增加互电容的电极,简单地说,就是将屏幕分块,在每一个区域里设置一组互电容模块都是独立工作,所以电容屏就可以独立检测到各区域的触控情况,进行处理后,简单地实现多点触控。电容式触摸屏原理电容技术触摸屏CTP(Capacity Touch Panel)是利用人体的电流感应进行工作的。电容屏是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂一层ITO(纳米铟锡金属氧化物),*外层是